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Abstract
Face-to-face dyadic spoken dialog is a fundamental unit of
human interaction. Despite numerous empirical evidences in
demonstrating interlocutor’s behavior dependency in dyadic in-
teractions, few technical works exist in leveraging the unique
pattern of dynamics in task of advancing emotion recognition
during face-to-face settings. In this work, we propose a frame-
work of encoding an individual’s acoustic features with dyad-
augmented deep networks. The dyad-augmented deep networks
includes a general variational deep Gaussian Mixture embed-
ding network and a dyad-specific fine-tuned network. Our
framework utilizes the augmented dyad-specific feature space
to incorporate the unique behavior pattern emerged when two
people interact. We perform dialog-level emotion regression
tasks in both the CreativeIT and the NNIME databases. We ob-
tain affect regression accuracy of 0.544 and 0.387 for activation
and valence in the CreativeIT database (a relative improvement
of 4.41% and 4.03% compared to using features without aug-
menting the dyad-specific representation), and we obtain 0.700
and 0.604 (4.48% and 4.14% relative improvement) for regress-
ing activation and valence in the NNIME database.
Index Terms: variational deep embedding, dyadic interaction,
emotion recognition, feature augmentation, frozen fine-tuning

1. Introduction
Dyadic interaction is a basic unit of face-to-face human com-
munication providing an important gateway for humans to con-
vey emotion, exchange information, and foster mutual under-
standing [1]. Interpersonal dependency between interlocutors
emerges naturally during interactions. This dependency is evi-
dent both in their internal states (e.g., emotion, cognition, per-
ception, etc) and their expressive behaviors (e.g., speech, lan-
guage, visual expressions, etc). The mutual behavioral depen-
dencies during interactions have been well-studied in the field
of psychology, i.e., known varying as synchrony, entrainment
or adaptation [2, 3]. Preliminary research have also formu-
lated this inter-dependency as a system framework to quantita-
tively interpret the nature of interactions [4, 5]. This naturally-
occurring dependencies internally and behaviorally between the
interacting interlocutors over time lead to unique intricate dyad-
specific patterns of interaction dynamics [6].

As the next-generation human-centered applications be-
come more prevalent, robust and reliable affective sensing in
face-to-face interactions is becoming more critical, especially
important in supporting technologies of natural dialog inter-
faces, human behavior understanding [7], and health applica-
tions [8]. While tremendous effort has been developed in emo-
tion recognition, majority of these research has focused mainly
on developing algorithms for an individual’s behavior in isola-
tion (e.g., [9, 10, 11]). Only recently, some research have started

to leverage the inter-dependencies between interlocutors to im-
prove affect recognition of an individual. For example, Yang et
al. conducted research in computational modeling of analyzing
joint behavior dynamics between dyads as a function of their
emotional states [12, 13, 14]; Metallinou proposed a hierarchi-
cal emotion evolution model [15, 16], and also several other
similar research [17, 18] together have demonstrated the use-
fulness of integrating dyadic patterns of affective states in task
of individual’s affect recognition. Most of these recent works
have presented frameworks that explicitly model the subtle and
intricate inter-dependency at the level of emotional states not
directly at the level of behavior representations.

In this work, we propose a novel network architecture to
obtain robust acoustic representation for an individual during
dyadic interactions. The approach includes two major com-
ponents: a general representation and a dyad-specific dynamic
representation. In specifics, our framework consists of using
variational autoencoder jointly learned with mixture of Gaus-
sian prior at the latent layer, i.e., variational deep embedding
(VaDE) [19]; this encoder network can be used to derive general
acoustic behavior representation. The modeling of intricate be-
havior patterns emerges during dyadic face-to-face interactions
can be cast as learning dyad-specific network by adapting the
general model to the specific dyad. Due to the subtlety of these
behavior dynamics, we utilize a encoder-decoder frozen adapta-
tion strategy that only updates the middle generative latent layer
to mitigate the issue of forgetting effect. With these two dyad-
augmented deep variational autoencoder networks, we can rep-
resent an individual acoustic features as a general VaDE repre-
sentation augmented with the dyad-specific representation.

We evaluate our proposed framework for the task of dialog-
level emotion recognition in two different databases: the Cre-
ativeIT (CIT) [20] and the NNIME database [21]. In specifics,
we obtain dialog-level affect regression accuracy of 0.544 and
0.387 for activation and valence in the CIT database (a relative
improvement of 4.41% and 4.03% compared encoding network
without augmenting dyad-specific representation). We obtain
0.700 and 0.604 (4.48% and 4.14% relative improvement) for
regressing dialog-level activation and valence in the NNIME
database. The rest of the paper is organized as follows: re-
search framework is in Section 2 followed by experiment setup
and results (Section 3); conclusion is presented in Section 4.

2. Research Methodology
2.1. Emotion Databases

We utilize two dyadic emotion interaction databases, the
NNIME and the CIT, in this work. We will briefly describe
each database in the following section.
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Figure 1: This is the overall framework for an individual’s dialog-level emotion recognition. We first extract low-level descriptors.
Then, the LLDs are encoded using two networks of general VaDE and dyad-specific VaDE. General representation acts as a behavior
representation learned from the entire database while dyad-specific representation embeds dyadic interaction dynamics. Our proposed
dyad-augmented representation is a concatenation of these two representations after performing dialog-level Fisher encoding. The
general VaDE is composed by encoding network f and decoding network h with parameters φ and θ. Similarly, the dyad-specific
VaDE has encoding network f ′ and decoding network h′ with parameters φ′ and θ′ respectively.

2.1.1. The USC CreativeIT Database (CIT)
The CreativeIT database (CIT) is a publicly-available multi-
modal emotional corpus consisting of dyadic affective interac-
tions [20]. The database has previously been used in studies
of dyadic affective behavior interplay [12, 13, 14]. The dyadic
interactions are carried out using an established theatrical act-
ing technique, i.e., Active Analysis, to elicit natural affective
behaviors. There are 7 unique male-female pairs (14 speakers)
of individuals engage in approximately 3-minute long affective
interactions (a total of 40 sessions, 80 total annotation samples).
The audio recordings of each individual are collected from lapel
microphones. Dialog-level emotion labels of each subject for
every interactions are rated using dimensional attributes, i.e.,
activation and valence, on a scale of [1, 5] by at least 3 naive
raters. In this work, the average ratings serve as ground truths.

2.1.2. The NNIME Emotion Database (NNIME)
The NNIME emotion database is a recently-published Chinese
dyadic multimodal interaction corpus using a similar setup as
the USC CreativeIT database [21]. The affective dyadic interac-
tions are hypothesized to be in real life scenarios with an overall
targeted affective atmosphere. The naturalness in the affective
behavior display is further ensured by a professional director.
There are 99 interaction sessions (198 annotation samples) with
each lasts around 3 minutes long. There are a total of 22 unique
dyads (44 individuals) in the database. The interaction sessions
are recorded by a video camera facing the stage and lapel mi-
crophone placing on each individual. The emotion attributes
(dialog-level) of activation and valence on a scale of [1, 5] are
annotated by 42 raters regarding the perceived emotion from
each individual. In our work, we take the average of the 42
ratings as our ground truths.

2.2. Dyad-Augmented Deep Variational Representations
We propose to encode acoustic features using dyad-augmented
deep variational representations. The overall computational
framework, including acoustic low-level descriptors, VaDE rep-
resentation, and dyad-augmented representation, is depicted in
Fig. 1. Each will be described in detail further below.

2.2.1. Acoustic Low-level Descriptors
We extract 45 acoustic low-level descriptors (LLDs) at the
frame level (25ms window 10ms step-size) over the speaking

region. The LLDs include 13 Mel Frequency Cepstral Coeffi-
cients (MFCCs), pitch, intensity, and their associated delta and
delta-delta. All of the extracted LLDs are further z-normalized
with respect to each individual speaker.

2.2.2. Variational Deep Embedding Network (VaDE)

In our framework, the representations are learned from varia-
tional deep embedding (VaDE) model [19], which is a varia-
tional autoencoder(VAE) with Gaussian mixture prior. The use
of Gaussian mixture relaxes the assumption and alleviate over-
regularization problem of a standard VAE with a single Gaus-
sian prior distribution [22]. VaDE is learned by maximizing
the evidence lower bound (ELBO), LEMBO , of log-likelihood
function, p(x), for the input sample x and latent factor z:

log p(x) = log

∫

z

∑

c

p(x, z, c)dz

≥ Eq(z,c|x)

[
log

p(x, z, c)

q(z, c|x)

]
= LEMBO

(1)

where c indicates hidden clustered (mixture) states ∈
{1, . . . ,K} and the q(z, c|x) is the variational posterior ap-
proximation distribution of the true posterior p(z, c|x), which
can be factorized as: q(z, c|x) = q(z|x)q(c|x). To model
q(z|x), the encoding network f(x;φ) is used to jointly learn
the latent GMM parameters λ (weight, mean and variance ma-
trix denoted as πc, µc and σ2

c for the c-th cluster.

[µ̃, log σ̃2] = f(x;φ) (2)

q(z|x) = N(z; µ̃, σ̃2I) (3)

Using stochastic gradient variational Bayes estimator and with
proper re-parameterization, the parameters can be adjusted by
maximizing ELBO with the following criterion:

DKL(q(c|x)||p(c|z)) ≡ 0 (4)

where p(c|z) is the prior for specific mixture c. In this work, we
utilize VaDE to derive our acoustic network representation and
then further encode frame-level LLDs to the latent representa-
tion x̄l using the learned encoding network f .
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Table 1: A summary on Spearman correlation obtained on valence and activation of regression experiments in the NNIME and CIT
database. All results have p-value < 10−3. The top half part shows the results of Exp I as baseline comparison and the lower half
part shows the results of augmentation and different fine-tune strategies. A general VaDE representation is denoted as RG and a
dyad-specific VaDE representation is RD . RA is the augmented representation concatenated by RG and RD .

NNIME CIT

RG E P EAG EV aDE PAG PV aDE E P EAG EV aDE PAG PV aDE

Act. 0.603 0.635 0.611 0.679 0.627 0.670 0.417 0.424 0.365 0.452 0.486 0.521
Val. 0.246 0.571 0.309 0.365 0.465 0.580 0.326 0.322 0.309 0.325 0.357 0.372

RG RD RA RD RA

PV aDE fine-tune adapt frozen fine-tune adapt frozen PV aDE fine-tune adapt frozen fine-tune adapt frozen
Act. 0.670 0.408 0.303 0.531 0.639 0.700 0.696 0.521 0.137 0.406 0.208 0.511 0.540 0.544
Val. 0.580 0.355 0.213 0.290 0.596 0.598 0.604 0.372 0.185 0.257 0.234 0.318 0.386 0.387

2.2.3. Dyad-Augmented Deep Embedding Networks

In this work, we learn two VaDE networks, i.e., a general VaDE
network and a dyad-specific VaDE network. The general VaDE
with encoding network f(x;φ) and decoding network h(z; θ)
is learned from the entire corpus that describes general expres-
sive vocal behaviors. The dyad-specific VaDE with encoding
network f ′(x′;φ′) and decoding network h′(z′; θ′) is used to
represent the unique interaction dynamics for a specific dyad-
pair. Since the available data for a specific dyad-pair is often
limited, a robust dyad-specific VaDE is learned by performing
fine-tuning on the general VaDE network.

Conventional fine-tuning often suffers from the problem of
forgetting effect, i.e., the network ‘forgets’ its modeling power
in the original domain after fine-tuning [23, 24]. In terms of
dyad-pair behavior dynamics, this forgetting can be detrimen-
tal. Intuitively, the dyad-specific dynamics should not devi-
ate too drastically from general behavior dynamics but to add
fine-grained auxiliary dynamics. Hence, we propose to learn
the dyad-specific network using a frozen transferring technique
(similar to [25]), which freezes the general VaDE encoder-
decoder network weights except updating the middle latent
layer jointly with GMM prior by fine-tuning using the data of
the specified dyad-pair.

In summary, for each individual, we encode the frame-
level LLDs using both the encoding networks, (f, f ′), of gen-
eral VaDE and dyad-specific VaDE model to derive our dyad-
augmented deep embedding latent vectors.

2.2.4. Dialog-level Emotion Recognition

Since each dialog is different in its duration, the encoded LLDs
into our dyad-augmented VaDE networks would result in a
varying number of representation sequences. We compute the
gradient log-likelihood function, i.e., Fisher scoring (indicating
the direction of λ to better fit x̄l), with respect to the first and
second order statistics of the learned latent VaDE-GMM param-
eters to further encode a sequence of acoustic latent representa-
tion x̄l into a fixed-length representation (also terms as GMM-
based Fisher-vector encoding [26]). The use of Fisher-vector
encoding has been shown to be competitive in speech-related
tasks of paralinguistic recognition [27], presentation scoring
[28], and emotion recognition [29, 30]. The dialog-level acous-
tic vectors that integrates both the general representation and the
dyad-specific dynamics is derived by concatenating the general
Fisher-scoring vector with the dyad-specific Fisher-scoring vec-
tor. This is the final feature vector input that is used to train a
support vector regression for dialog-level emotion recognition.

3. Experimental Setup and Result
In this work, we compare our dyad-augmented VaDE acoustic
representation with different models in tasks of activation and
valence regression on the two databases. Two different analyses
experiments are carried out:

• Exp I : Comparison to other vocal representations for
dialog-level emotion recognition

• Exp II: Comparison between different dyad-specific
augmented representation techniques

Exp I is carried out by comparing with multiple representation
learning network schemes with two different low level feature
sets when using only the general representation. Exp II is de-
signed to examine the effect of dyad-augmented representation
on emotion recognition task, which is derived from both the
general network embedding and dyad-specific network embed-
ding and further compare to other fine-tuning strategies.

All the experiments are carried out using leave-one-dyad-
out cross validation, the support vector regression with linear
kernel and fixed parameters (C = 1), and Spearman correlation
as the evaluation metric. Table 2 lists the network parameters
for general VaDE model and dyad-specific VaDE model.

3.1. Exp I: Comparison to Other Representations
A list of feature representations to compare is shown below:

• E : Fisher scoring representation on eGeMAPS low-
level descriptors in 20ms frame size and 10ms step size
computed using opensmile [31]

• EAG : Fisher scoring representation derived from GMM
separately trained on the autoencoder latent layer using
low-level descriptors of eGeMAPs

• EVaDE : Fisher scoring representation derived from
the VaDE latent layer using low-level descriptors of
eGeMAPs

• P : Fisher scoring representation on low-level acoustic
features computed using Praat described in section 2.2.1

• PAG : Fisher scoring representation derived from GMM
separately trained on the autoencoder latent layer using
low-level descriptors from Praat

• PVaDE : Fisher scoring representation derived from the
VaDE latent layer joint GMM prior using low-level de-
scriptors from Praat

The results of Exp I are demonstrated in the top half of Ta-
ble 1. We show the recognition results obtained using each fea-
ture set (E: eGeMAPS, P : Praat), autoencoder-based methods
(EAG or PAG), and the VaDE methods (EV aDE and PV aDE).
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Figure 2: It shows a schematic of different fine-tuning strate-
gies: (a) a simple fine-tuning method that uses low learning rate
and few epochs, (b) an adaptation with an additional layer for
capacity expansion, and (c) our proposed fine-tuning approach
with trainable latent layer while the others frozen.

Our experiments show that the best recognition accuracies ob-
tained using general model only is by learning the representa-
tion using the VaDE approach, which achieves correlations of
0.670 and 0.580 in NNIME database on activation and valence
dimension, and 0.521 and 0.372 on activation and valence di-
mension respectively in CIT database.

We observe that the VaDE representation learned using both
feature sets achieve the best performance compared to the other
learning schemes. It is also interesting to see that EAG or
PAG, which learns the autoencoder and GMM separately, can
sometimes exceed the accuracy obtained from E or P though
never surpass the VaDE model (jointly optimized the autoen-
coder with GMM parameters). It seems to indicate that the ad-
vanced nonlinear representation modeling power in these net-
work structures benefits from the loosely-regularized GMM in
their latent layer when learning from data.

3.2. Exp II: Comparison between Dyad-Augmentations

Our proposed dyad-augmented vocal representation (RA) in-
cludes a general VaDE representation (RG) and a dyad-specific
VaDE (RD). It obtains the best correlation, i.e., 0.700 and 0.604
for activation and valence on the NNIME, and 0.544 and 0.387
for activation and valence on the CIT. This result shows a rela-
tive gain of 4.48% and 4.14% compared withRG using PV aDE

(without dyad-augmentation) in recognizing activation and va-
lence in the NNIME database. Similar improvement in obtain-
ing a 4.41% and 4.03% relative performance on activation and
valence also holds in the CIT database (Table 1). We observe
that using RD only would negatively impact the recognition
correlation due to its inadequate modeling power on acoustic
representation (contains only the dyad-specific variability from
limited data samples). These results shows that our augmenta-
tion technique which incorporate dyadic-specific unique behav-
ioral dynamics is important in improving the emotion recogni-
tion for an individual in an face-to-face setting.

Since the dyad-specific VaDE is learned by fine-tuning on
general VaDE. We further analyze and compare various fine-
tuning techniques in deriving the dyad-specific VaDEs. We ex-
amine the three widely-used fine-tuning methods illustrated in
Figure 2. First, we simply fine-tune the network using the dyad-

Table 2: The VaDE architectures and configurations used in our
emotion recognition experiments.

Parameters minibatch epoch CGMM lr

CIT
RG 100 50 16 0.0002
RD 100 10 8 0.00002

NNIME
RG 20 50 16 0.002
RD 20 10 16 0.00002

specific data. Second, we add an additional hidden layer and
make the latent layers trainable with the other original layers
frozen (denoted as adaptation in Figure 2). Third is our pro-
posed method that makes the latent layer trainable with the orig-
inal encoder-decoder layers frozen (denoted as frozen strategy
in Figure 2). All of these fine-tune strategies are carried out
using small learning rate and few epochs.

Table 1 bottom half summarizes results obtained from dif-
ferent fine-tuning strategies. We observe that techniques based
on adaptation and frozen methods can outperform typical fine-
tuning method. The frozen strategy obtains the best perfor-
mance among the three. Generally, methods with frozen strat-
egy is favorable for the augmented representation compared to
the adaptation method, which may due to the fact that the adap-
tation adds an non-initialized layers and may be too complex
to model the ‘additional’ intricate vocal interaction dynamics
between the interlocutors.

4. Conclusion
In this paper, we propose a novel framework in learning a dyad-
augmented deep variational vocal representations that integrates
the unique dyadic interaction dynamics to improve individual’s
dialog-level emotion recognition. By encoding and concate-
nating an individual acoustic features resulting from using two
deep generative networks, a general and dyad-specific VaDE
network, we achieve an improved dialog-level emotion recog-
nition accuracies on activation and valence dimensions demon-
strated on two different corpora. The dyad-specific VaDE repre-
sentation is learned through fine-tuning general network using
a frozen strategy. Our analyses further demonstrate that such
a frozen fine-tuning technique is important in obtaining the im-
proved accuracy. To the best of our knowledge, this is one of the
first works in embedding the natural dyadic behavior dynamics
directly at the level of acoustic representation in task of speech
emotion recognition.

There are multiple future directions. One of the immedi-
ate work is to include multimodal behavior information, e.g.,
body movement and gestural information, to achieve a fur-
ther improved emotion recognition by leveraging the mutual-
dependency across behavior modalities and further between in-
teracting dyads. The representation learning framework offers
flexibility in sophisticated behavior and even interaction pat-
tern modeling at the low-level descriptors level. We will fur-
ther validate and advance upon the VaDE-based behavior repre-
sentation framework on an expanded list of dyadic interaction
databases. By continuing to develop algorithm in achieving a
robust emotion recognition system would contribute to the en-
abling of the next generation applications in not only human-
centered research and development but also create a tangible
impact on mental health-related applications [32].
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